Strategies and Land Use Restructuring for Transit Oriented Development in Ahmedabad, using Geographical Information System (GIS)

Rushikesh Padsala, Marmik Lapsiwala, Priyanshi Dhimole, Nausheen Khan
Student, III Semester, M.Tech Geomatics,
Faculty of Technology, CEPT University
University Road, Navrangpura, Ahmedabad, Gujarat
CONTENT

• INTRODUCTION
• CITY PROFILE - AHMEDABAD
• STUDY AREA
• OBJECTIVE
• CURRENT SCENARIO:
 • DEMOGRAPHY
 • LANDUSE
 • PHYSICAL INFRASTRUCTURE
 • TRAFFIC CONDITION
 • PUBLIC TRANSPORTATION
 • SWOT ANALYSIS
• RESTRUCTURED SCENARIO:
 • LANDUSE
 • PHYSICAL INFRASTRUCTURE AND TRAFFIC CONDITION
 • PUBLIC TRANSPORTATION
• CONCLUSION
INTRODUCTION

• Government of Gujarat in association with Ahmedabad Urban Development Authority (AUDA) has made its Development Plan – 2021 considering Smart City, TOD and CBD.

• TOD = Transit Oriented Development

• A transit-oriented development (TOD) is a mixed-user residential and commercial area designed to maximum access to public transport and often incorporates features to encourage transit ridership.

• TOD is an overall approach to development. Simply locating near transit does not make an area oriented towards transit.

• Transit Oriented Development is a promising concept which binds Land Use, Sustainability and Transportation together.

• TODs are generally done within a radius of one-quarter to one-half mile (400 to 800 m) from a transit stop, as this is considered to be an appropriate scale for pedestrians to approach transit station.

• TOD encourages:-
 • Seamless Mobility.
 • Smart Growth of the City.
 • Attractive, Safe and Walkable neighborhood.
 • Lesser Traffic and Smoother Mobility.
 • Land Use Transportation Integration.
 • Reduction in Travel Time.
 • Improved Urban Environment.
CITY PROFILE - AHMEDABAD

- Largest City and former capital of Gujarat State.
- 5th Largest City and 7th Largest Metropolitan Area of India.
- Regarded as one of the fastest growing cities in India.
- Population: 6.3 Millions.
- 3 Main Public Transportation City
 - Ahmedabad Municipal Transportation System (AMTS)
 - Bus Rapid Transportation System (BRTS)
 - MetroLink Express Gandhinagar and Ahmedabad (MEGA)
STUDY AREA

- Study Area is divided into total of 6 wards.
- Study Area is a linear stretch of 4.5 Km.
- 500m of buffer area is taken into consideration.
- Study area encapsulates 6.0 Sq. Km. of Land.
- Total Population of Study Area is 85,000 (As per Census – 2011).
- Average Density turns out to be approx. 14,400 / Sq. Km.
- A rich mixture of mixed land use is present.
- Since the area is more business oriented, large number of commuters commute daily.
- Two major public transports are being used:
 - AMTS
 - BRTS
- Available FSI in the study area is 4.0 out of which on an average Only 1.8 FSI is used.
OBJECTIVE

• To prepare conceptual plan(s) / strategy(s) for our study area which can provide a helpful guide to the person who will be preparing the final Local Area Plan (LAP).

• To assess the current scenario of our study area and produce analytical maps on ESRIs ArcGIS.

• Current Scenario should be analyzed for:
 • Existing Demography
 • Existing Land Use
 • Existing Physical Infrastructure
 • Existing Traffic Condition
 • Existing Public Transportation.

• On complete understanding of current scenario, restructured scenarios shall be prepared and analytical maps should be produced used ESRIs ArcGIS.

• Restructured Scenario(s) shall be prepared for:
 • Restructed Land Use
 • Restructured Physical Infrastructure
 • Restructed Traffic Scenario
 • Alternatives to find a way to link AMTS and BRTS.
CURRENT SCENARIO: DEMOGRAPHY

Wardwise Population (2011)

Legend
Population

- 159
- 1,676
- 9,012
- 9,522
- 23,505
- 40,355
CURRENT SCENARIO: DEMOGRAPHY

Wardwise Density (2011)

Legend
Density (Pop / Sq. Km.)
- 4,092
- 5,157
- 6,113
- 7,916
- 20,955
- 22,746
CURRENT SCENARIO:
LANDUSE
CURRENT SCENARIO: LANDUSE
CURRENT SCENARIO:
LANDUSE
CURRENT SCENARIO:
PHYSICAL INFRASTRUCTURE

Road Network

Legend
- Traffic Junction

Road Network
- Major Roads
- Collector Roads
- Street Lanes

Land Use
- Commercial
- Institutional
- Mix
- Open Plot
- Recreational
- Residential
- Slums

Scale: 1:15,000
CURRENT SCENARIO: PHYSICAL INFRASTRUCTURE

Major Road with BRTS Stop
CURRENT SCENARIO: PHYSICAL INFRASTRUCTURE

Major Road with BRTS
CURRENT SCENARIO:
PHYSICAL INFRASTRUCTURE
CURRENT SCENARIO:
PHYSICAL INFRASTRUCTURE

Street Road

[Diagram showing a street with buildings and cars, indicating no turn lanes.]
CURRENT SCENARIO: PHYSICAL INFRASTRUCTURE

Collector Road
CURRENT SCENARIO:
TRAFFIC CONDITION

Traffic Volume (Weekday)

Legend
- Traffic Junction
- Road Network

Count
- PCU
- Morning
- Afternoon
- Evening

Land Use
- Commercial
- Institutional
- Mix
- Open Plot
- Recreational
- Residential
- Slums
CURRENT SCENARIO:
TRAFFIC CONDITION
CURRENT SCENARIO:
TRAFFIC CONDITION

Traffic Condition (Weekday - Evening)
CURRENT SCENARIO:
TRAFFIC CONDITION

Traffic Condition (Weekend - Morning)
CURRENT SCENARIO: TRAFFIC CONDITION

Traffic Condition (Weekend - Afternoon)
CURRENT SCENARIO: TRAFFIC CONDITION

Traffic Condition (Weekend - Evening)

Legend
- Traffic Junction
- Road Network

Condition
- Congested

Land Use
- Commercial
- Institutional
- Mix
- Open Plot
- Recreational
- Residential
- Slums

1:15,000

0 0.375 0.75 1.5 Kilometers
CURRENT SCENARIO: TRAFFIC CONDITION

Street Parking

Speed of Vehicle (km/h)
CURRENT SCENARIO: PUBLIC TRANSPORTATION

Modes of Transportation

MODES OF TRANSPORT
- Private Transport 83%
- Intermediate Transport 15%
- Public Transport 2%

PRIVATE TRANSPORT
- Four wheeler 64%
- Two wheeler 35%
- Bicycle 1%
CURRENT SCENARIO:
PUBLIC TRANSPORTATION

BRTS Routes and Junctions

Legend
- BRTS Junction
- Road Network

Route Phase
- Phase I
- Phase 2

Land Use
- Commercial
- Institutional
- Mix
- Open Plot
- Recreational
- Residential
- Slums

1:15,000

0 0.375 0.75 1.5 Kilometers
CURRENT SCENARIO: PUBLIC TRANSPORTATION

BRTS Bus Frequency (Weekday)

Legend
- BRTS Junction

Route Phase
- Phase I
- Phase II

Load
- Count
- Morning
- Afternoon
- Evening

Land Use
- Commercial
- Institutional
- Mix
- Open Plot
- Recreational
- Residential
- Slums
CURRENT SCENARIO:
PUBLIC TRANSPORTATION
CURRENT SCENARIO: SWOT ANALYSIS

SWOT Analysis

<table>
<thead>
<tr>
<th>S</th>
<th>W</th>
<th>O</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>The study area encapsulates varied types of land use.</td>
<td>Huge parking problems for commercial shops.</td>
<td>Large portion of vacant land are publicly owned and therefore readily available for desired development, particularly housing schemes and parking plots.</td>
<td>Due to poor maintenance of open plots, they can tend to convert into either waste disposal site or slums very rapidly.</td>
</tr>
<tr>
<td>A Good mixture of residential buildings and commercial activities.</td>
<td>None of the roads parallel to BRTS corridors are as per IRC standard road widths.</td>
<td>Providing better social facilities.</td>
<td>Every chances of roads, which are not as per IRC road width standards, to get over flooded with increase in population.</td>
</tr>
<tr>
<td>Large available workforce and strong presence of local market.</td>
<td>All roads parallel to BRTS corridors goes congested in peak hours.</td>
<td>Establishment of good formal market.</td>
<td>Street parking is increasing day by day.</td>
</tr>
<tr>
<td>Availability of large unused open plots.</td>
<td>AMTS and BRTS buses runs parallel to each other.</td>
<td>Good networking between AMTS and BRTS with proper parking space can bring public transport into lime light.</td>
<td>Chances of increase in land values with increase in FSI.</td>
</tr>
<tr>
<td>Existing multi-public transport system like AMTS and BRTS.</td>
<td>People still tend to use private vehicles though public transport is available.</td>
<td>Creating a green environment around transit station with proposed increase in FSI.</td>
<td>Once the area is upgraded, a possibility that, the process of gentrification may take place.</td>
</tr>
</tbody>
</table>
Restructured Land Use Scenario:

Proposed FSI:

- 2.7
- 4
RESTRUCTURED SCENARIO: LANDUSE
Restructured Scenario: Landuse

Restructured Land Use in 200m Buffer

- Mix: 60%
- Residential: 21%
- Commercial: 6%
- Parking Plot: 2%
- Recreational: 8%
- Institutional: 3%

Existing vs Restructured Land Use in 200m Buffer (%)

- Mix: Existing = 60%, Restructured = 43%
- Commercial: Existing = 21%, Restructured = 15%
- Residential: Existing = 30%, Restructured = 21%
- Institutional: Existing = 1%, Restructured = 6%
- Recreational: Existing = 1%, Restructured = 8%
- Slum: Existing = 1%, Restructured = 8%

Graphs showing the comparison of existing and restructured land use distribution in a 200m buffer area.
RESTRUCTURED SCENARIO: LANDUSE

Restructured Land Use in 300m Buffer

- Residential: 45%
- Commercial: 27%
- EWS: 10%
- Institutional: 10%
- Recreational: 2%
- Mix: 1%

Existing vs Restructured Land Use in 300m Buffer (%)
Changes Made and Strategies Used to Restructure Physical and Traffic Scenario

- All types of roads were redesigned as per IRC standards.
- All roads were redesigned taking into consideration “Transit Oriented Development”.
- AMTS buses are restricted to run on all the major roads specially on the major roads having BRTS.
- Heavy vehicles like trucks are restricted to run on major roads between 8:00 AM to 10:00 PM everyday.
- Street parking is completely banned.
RESTRICTED SCENARIO: PHYSICAL INFRASTRUCTURE AND TRAFFIC CONDITION

Existent vs Revised Traffic Condition

(Weekend)

Existent vs Revised Traffic Condition

(Weekday)
RESTRUCTURED SCENARIO:
PUBLIC TRANSPORTATION

Accessibility / 5 Mins Walkable Distance (200m Buffer)
Restructured Land Use (200m Buffer) around BRTS Stops

Restructured Scenario:

Public Transportation
Restructured Land Use (200m Buffer) around BRTS Stops

Restructured Scenario: Public Transportation

Existing vs Restructured Land Use (200m Buffer) in Parshwanath Jain Mandir (%)

Existing vs Restructured Land Use (200m Buffer) in Parasnagar (%)
Interconnectivity between BRTS and AMTS

Sample Interconnectivity
An example of BRTS and AMTS networking is shown here. Suppose a person wants to travels from Kamnath Mandir (Darpan) to Sattadhar Society using public transport. The best possible way he/she can adopt is to take AMTS (Point 1), reach near by by BRTS station (Point 2), take up BRTS bus (Point 3) and reach his/her destination (Point 4). Since AMTS are not allowed on any major roads, no direct connectivity will be able form Kamnath Mandir (Darpan) to Sattadhar society, hence if he/she wants to travel by public transport, above route is the best route available.
CONCLUSION

• Besides producing beautiful maps ESRIs ArcGIS analytical tools like Network Analysis, Buffer, Site Suitability had a big impact on proposing restructured scenarios.

• Implementation of results obtained by this pilot project on whole Ahmedabad city has a tremendous potential to restructure the way TOD, Land Use and Existing Transportation works.

• On using network analysis and putting barriers on those routes where AMTS and BRTS runs parallel and reducing time for heavy vehicles like Trucks entering in the city from 8:00 AM to 10:00 PM, considerable reduction in vehicle traffic was obtained.

• Integrating ESRIs ArcGIS with Urban Planning, Transport Planning, Site Assessment helps in better decision making and proposing refined / restructured Conceptual Plan (s) / Strategy(s)
THANK YOU